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Abstract—There is a high demand to improve the encoding
and decoding speed of data compression among modern users.
When a binary Huffman code is used, it requires more time to
compress or decompress every single bit. The technique which
is being proposed in this paper is a new Huffman-Based tree
structure instead of a consistent binary tree to reduce decoding
time complexity. Since the traversing time depends on the height
of the tree, the proposed tree structure provides a smaller height
than the height of the regular binary tree. The performance
of the regular Huffman tree technique and proposed technique
is evaluated in terms of the decoding time. According to the
results analyzed, the proposed technique outperforms the current
Binary tree technique in terms of decompression speed while the
compression performance remains nearly the same.

Index Terms—Compression, Decompression, Huffman tree,
Image Processing, Python, Raspberry pi

I. INTRODUCTION

Today’s high-performance computing (HPC) applications
generate massive amounts of data that are challenging to store
and transfer efficiently during execution. As a result, data
compression has emerged as a critical technique to mitigate
the storage burden, data movement cost. Data compression is
divided into two parts as lossless and lossy compression. In
lossy compression, some information of the original image
is removed. The lossy compression techniques are used in
the applications like gaming, entertainment, graphic designing,
etc., where the loss in the image/video is acceptable. In lossless
compression techniques, the information which cannot be
perceived by HVS (Human Visual System) is removed which
makes the reconstructed image lossless. However, applications
in the fields such as medical imaging, satellite imaging, tissue
engineering require preserving the original information of
the images where the lossless compression techniques play
their role and lossless technique is more preferred than the
lossy technique to obtain the original quality of an image.
Therefore, to have a better quality performance the Huffman-
based technique [1] is introduced. Lossless Image compression
is an important research area not only for space requirements
but also for reducing query time. Compression and decom-
pression speeds are important aspects of data compression
techniques that lead to greater performance. It reduces the
performance when it requires more time to compress an image.
Even so, It has been carried out more researches based on

memory-efficient techniques instead of processing speed. As
a consequence, a fast, lossless, and efficient method is needed.

Huffman coding is arguably the most efficient Entropy
coding algorithm in information theory, such that it could be
found as a fundamental step in many modern compression
algorithms. It is the most popular and widely used coding
scheme, which collects probabilities of each intensity value
in descending order. It assigns shorter codewords [2] for
high frequencies and longer codewords for lower frequencies.
The Huffman technique assigned a unique codeword for each
intensity value and independent of data type.

The traditional Huffman-Based tree structure algorithm uti-
lizes binary code which slows the decoding process [3]. The
binary tree [4] structure is currently performed bit by bit
decoding. A single bit is compared to any possible code with
a codeword length of one. If no match is found, another bit
is shifted in to search for the bit pair among all codewords
with a word length of two. This process is repeated until
a match is identified. Even though, the binary approach is
memory efficient, it requires more time to process when the
codeword to be decoded is long. In consequence, the research
proposes a new Huffman-based tree structure algorithm to
reduce the decoding time complexity. The algorithm is based
on the variation of the existing Huffman tree structure which
encoded each value into a Quaternary code stream instead of
a binary bit stream using the Quaternary [3] Huffman tree. A
Quaternary code stream for Huffman coding required a shorter
Huffman tree which has less depth than the binary Huffman
tree. A shorter Huffman tree gives the potential benefit of
less traverse time [5], which increases both compression and
decompression throughput. Hence, the research carried out
compression and decompression algorithm based on the new
tree structure. The data sets used in this study are raw images
acquired by the Raspberry Pi camera module.

Figure 1 illustrates the process of image (RGB, Bitmap)
compression that is captured by the Raspberry Pi camera
module. The captured images have raw data with more storage
space. Hence, it is required to compress images by considering
the space requirement using the Huffman compression algo-
rithm. The RGB images are separated into three layers and
apply Huffman coding for each layer individually. Compressed
bit stream is decoded using the Huffman decoding algorithm.
Finally, the reconstructed image is generated by summing the



Fig. 1. Systematic Block Diagram of Image Compression

three decoding layers.
The rest of the paper is organized as follows. The literature

review has been carried out in section II. Section III describes
methodology and materials. Implementation results are present
in section IV. Finally, section V concludes the paper.

II. LITERATURE REVIEW

The lossless compression technique ensures the reproduc-
tion of original data without any loss of information. In 1952,
DAVID A. HUFFMAN presented a coding technique in [6]
for data compression, where the codeword is assigned to
each symbol and no two symbols have the same codeword.
Without requiring any additional information, the starting and
the ending point of a symbol can be identified. After the
Huffman algorithm was proposed, it was found to be effective
in compressing image and video data in addition to text data
[7].

According to the Huffman-based studies, some algorithms
obtained higher compression ratios by sacrificing processing
speed, whereas others achieved higher speeds by sacrificing
memory requirement. Hashemian has carried out the compres-
sion technique based on the tree clustering algorithm to speed
up the process of search for a symbol in a Huffman tree and
to reduce the memory size by avoiding the sparsity of the tree.
The experiment was conducted on video data and clarify that
the method is very efficient [8]. Suri and Goel introduced the
use of a ternary tree that is a new one-pass algorithm for the
decompression of Huffman codes [9].

Lin, Huang, and Yang have proposed an algorithm by
transforming the traditional Huffman tree into a recursion
Huffman tree. The algorithm decodes more than one symbol
at a time using the recursive Huffman tree and speeding up the
decoding time. The decoding time of the proposed technique
gives greater improvement instead of using the basic Huffman
tree. As the limitation of the study, a large memory is required
and only applicable for test data compression problems [10].

In another research, Xiaofeng and Shen have introduced
the fast lossless compression scheme for medical images
that is based on the LS prediction method and most- likely
magnitude Huffman coding with significant time and compres-
sion improvements over the JPEG (Huffman) and JPEG2000
(lossless). This newly suggested scheme has the potential to
lower the cost of the Huffman coding table while ensuring a

high compression ratio [11]. The method enables systems to
compress imagery in real-time with software-only implemen-
tation.

Jose Oliver and Manuel P. Malumbres introduced a very
fast version of the lower-tree wavelet encoder to reduce the
processing time that is based on Lower Tree Wavelet Coding
using Huffman codes. This includes three stages. At the first
stage, all of the symbols required to efficiently represent the
transformed image are calculated. Statistics can be gathered
during this stage to compute the Huffman table in the next
stage. Finally, using Huffman coding the symbols computed
during the first stage are coded. The proposed encoder is 9
times faster than progress while the PSNR is from 0.3 to 0.5
dB higher at low bit rates. The encoder was a good fit for
real-time multimedia communications with simple hardware
and software implementation [1].

In recent research, Rajiv Ranjan introduced the benefits of a
DWT-based approach by utilizing the canonical Huffman cod-
ing as an entropy encoder. The proposed method requires less
computing time and has a compact code-book size compared
to the basic Huffman coding [12].

Aharon Fruchtman, Yoav Gross, Shmuel T. Klein, and Dana
Shapira has been presented a new variant of Huffman encoding
that provably always performs better than static Huffman
coding by at least m-1 bits, where m denotes the size of
the alphabet. They introduced a new generic coding method,
extending the known static and dynamic variants. It is probably
as good as the best dynamic variant known to date. The method
is shown improvements over static and dynamic Huffman and
arithmetic coding even when the encoded file includes the
model description [14].

Janarbek Matai, Joo-Young Kim, and Ryan Kastner have
proposed a method for energy-efficient Huffman coding which
is based on Canonical Huffman coding. Canonical Huffman
coding has two major advantages over Traditional Huffman
coding. The encoder sends the whole Huffman tree structure
to the decoder in basic Huffman coding. As a result, in order
to decode each encoded symbol, the decoder must traverse the
tree. In Canonical Huffman coding, the decoder only receives
the number of bits for each symbol and reconstructs the code
word for each symbol. This makes a more efficient decoder in
terms of memory usage and computation requirements [15].

In the above literature, various compression algorithms have
been proposed using different Huffman-based coding systems.
However, the decoding speed is mostly affected by the length
of the Huffman code.

Therefore, this paper introduces a new Huffman tree struc-
ture which has not been studied thoroughly in the existing
works to produce more efficient optimal code to ensure the
time efficiency of Huffman decoding. Due to the less-height
tree, it generates a more optimal codeword.

III. METHODS AND MATERIAL
A. Huffman Algorithm

The process begins constructing a Huffman tree [13] from
bottom to top. Frequencies of intensity values are assigned to



each node of the tree. Then the Binary Huffman tree is built
by combining the least frequent nodes. The process is repeated
until the last frequency node. After that bit “0” assigns to the
left child and bit “1” represents to right child. By traversing
the tree, assigns shorter codewords to the higher frequency
nodes and longer codewords for lower frequency nodes. The
technique assigns a unique codeword for each intensity value.
Figure 2 illustrates an example of pixel values from a 5*5
image block. The produced codewords for the example image
block using the Binary Huffman tree are shown in Table 1.
The constructed Binary Huffman tree is shown in Figure 3.

Fig. 2. An example of pixel values of 5*5 image block

TABLE I
CODE WORD GENERATION USING BINARY HUFFMAN TREE

Intensity Value Frequency Code-word
8 6 00

25 4 011
32 4 010
50 3 100
64 3 101
14 2 110
58 2 1110
0 1 1111

Fig. 3. Binary Huffman Tree

B. Proposed Tree Structure
The research has been proposed a Huffman-Based tree struc-

ture to mitigate the processing time. Instead of implementing
the Binary Huffman tree structure, the 4-array tree structure
is employed. The proposed tree structure is used to produce
optimal codewords which speed up the searching process.

The tree has 0 – 4 children nodes named as a left child,
left mid child, right mid child, right child. The codewords

are made up of the numbers 00,01,10 and 11. To begin,
the probabilities are evaluated to all possible pixel values,
and select the four-pixel values with the lowest probability.
All four-pixel value probabilities are replaced by a single
probability node and the probability of the parent node is
the sum of these four probabilities. The process is repeated
until only one node remains. As the traversing time of a tree
depends on its weighted path length, the weighted path length
should be minimum to have a minimum time. In addition,
the traversing time depends on the height of the tree and
symbol frequencies. The height of the Huffman tree is reduced
by utilizing the implemented tree structure, compared to the
binary tree. Hence the traversing time is mitigated for the petite
tree. In this method, the most frequent pixel value is stored
first in the header. It has a faster decoding speed since the
whole codeword does not need to be stored in the header.
Since the decoding process retrieves only two bits at a time,
the decoding process is sped up.

After determining the frequencies, the frequencies are stored
in a dictionary and used to create the petite tree. Then the pixel
values are replaced by the codes. Decoding is achieved by
reading decoding data two bits at a time. The novelty technique
achieves a faster decoding time for data compression. The
process is done to three layers of RGB images separately and
combined at the decoding process.

If we consider the set of intensity values as I = I1 ,I2
,. . . . . . . . . ., In-1 with frequencies F = f0 , f1 ,. . . . , fn-1 for
f0 >f1 >f2 >. . . . . . .>fn-1, Where the intensity value Ii has
frequency fi. Using the Huffman algorithm to construct the
Huffman tree, the codeword ci, 0 ≤ i ≤ n-1, for intensity
value Ii then can be determined by traversing the path from
the root to the leaf node associated with the intensity value
Ii, where the left branch is corresponding to “00”, left mid
branch is corresponding to “01” and the right mid branch is
related to “10” and the right branch is related to “11” [9].

Figure 4 presents the implemented tree for the proposed
method which consists of four levels. At the decoding process,
it matches two bits at a time from the encoded bit stream by
initializing level 1 of the header tree. If there is an intensity
value that has a codeword length of 2 bits, it can be found in
level 1. However, for the codeword length of 4 bits needs to
only match with level 1 and level 2 to find the intensity value.
Hence, the simple header tree speeds up the decompression. In
table 2, the generated codewords using a 4-array tree structure
are shown.

TABLE II
CODE-WORD GENERATION USING PROPOSED HUFFMAN TREE

Intensity Value Frequency Code-word
8 6 00
25 4 01
32 4 10
50 3 1100
64 3 1101
14 2 1110
58 2 111100
0 1 111101



Fig. 4. Proposed Tree Structure

IV. RESULTS AND DISCUSSION

In this section, the performance of both techniques are
analyzed. The five images with different resolutions are cap-
tured through the raspberry pi camera module (5MP, picture
resolution 2592 x 1944, Rev 1.3) and compressed using both
techniques as the traditional Huffman-based algorithm and the
proposed algorithm in the python environment.

The Compression ratio, Compression and Decompression
speeds, PSNR were measured using the implemented tech-
niques and the decompression time was mainly analyzed for
all images. The compression and decompression speeds of
both techniques are measured with the same environment
and same compiler. The Raspberry Pi3B (Raspbian OS) and
Intel®Core™i5-7200 CPU running at 2.5 GHz with Turbo
Boost up to 3.1 GHz (Windows OS) were used. The average
output for 10-20 runs was taken in all cases. The 20 con-
secutive runs for each image in the Windows platform and 10
consecutive runs in the Raspberry Pi platform were considered
for the experiment. The analyzed results are shown the below
tables.

TABLE III
PERFORMANCE ANALYSIS OF BINARY TREE TECHNIQUE USING

WINDOWS PLATFORM

snapshot
Image Name 1.bmp 2.bmp 3.bmp 4.bmp 5.bmp
Image Size (MB) 14.4 3.6 0.9 0.225 0.025
Compression Ratio 1.0721 1.0579 1.1146 1.1191 1.1113

Compression
Time (s)

Min 70.40 16.61 3.87 0.94 0.109
Max 100.84 19.35 4.7 1.24 0.22
Avg 77.65 17.85 4.22 1.048 0.138

Decompression
Time (s)

Min 170.79 41.72 10.47 2.65 0.28
Max 211.074 47.56 11.98 3.31 0.48
Avg 184.51 44.80 11.22 2.95 0.338

PSNR (dB) 30.77 29.28 31.25 31.92 30.31

TABLE IV
PERFORMANCE ANALYSIS OF PROPOSED TREE TECHNIQUE USING

WINDOWS PLATFORM

snapshot
Image Name 1.bmp 2.bmp 3.bmp 4.bmp 5.bmp
Image Size (MB) 14.4 3.6 0.9 0.225 0.025
Compression Ratio 1.0540 1.0414 1.0945 1.0979 1.0903

Compression
Time (s)

Min 70.88 16.85 3.89 0.94 0.109
Max 82.81 26.69 5.39 1.21 0.172
Avg 75.26 18.89 4.37 1.05 0.12

Decompression
Time (s)

Min 63.13 15.86 3.77 0.95 0.109
Max 69.93 18.58 4.75 1.75 0.265
Avg 66.75 16.65 4.11 1.101 0.137

PSNR (dB) 30.77 29.28 31.25 31.92 30.31

TABLE V
PERFORMANCE ANALYSIS OF BINARY TREE TECHNIQUE USING

RASPBERRY PI

snapshot
Image Name 1.bmp 2.bmp 3.bmp 4.bmp 5.bmp
Image Size (MB) 14.4 3.6 0.9 0.225 0.025
Compression Ratio - - 1.1146 1.1191 1.1112

Compression
Time (s)

Min - - 26 6.65 0.92
Max - - 26.71 6.84 1
Avg - - 26.31 6.75 0.947

Decompression
Time (s)

Min - - 59.45 14.91 1.58
Max - - 61.89 15.32 1.69
Avg - - 60.56 15.078 1.603

PSNR (dB) - - 31.25 31.92 30.31

TABLE VI
PERFORMANCE ANALYSIS OF PROPOSED TREE TECHNIQUE USING

RASPBERRY PI

snapshot
Image Name 1.bmp 2.bmp 3.bmp 4.bmp 5.bmp
Image Size (MB) 14.4 3.6 0.9 0.225 0.025
Compression Ratio - 1.0414 1.0945 1.0979 1.0903

Compression
Time (s)

Min - 110.221 26.39 6.72 0.89
Max - 113.107 27.01 6.97 0.92
Avg - 111.99 26.71 6.86 0.903

Decompression
Time (s)

Min - 101.24 23.96 6.03 0.68
Max - 103.88 24.77 6.23 0.71
Avg - 102.325 24.39 6.12 0.699

PSNR (dB) - 29.28 31.25 31.92 30.31

TABLE VII
DECOMPRESSION PERFORMANCE COMPARISON OF THE PROPOSED AND

REGULAR HUFFMAN TECHNIQUES IN WINDOWS PLATFORM

Snapshot

Source Name 1.bmp 2.bmp 3.bmp 4.bmp 5.bmp

Image Size(MB) 14.4 3.6 0.9 0.225 0.025

Time(s)

Regular
Huffman
(RH)

184.51 44.80 11.22 2.95 0.338

Proposed
Huffman
(PH)

66.75 16.65 4.11 1.101 0.137

Enhancement Rate

((RH-PH)*100)/RH
63.82 62.83 63.36 62.67 59.46



Fig. 5. Decoding Time comparison in Windows Platform

TABLE VIII
DECOMPRESSION PERFORMANCE COMPARISON OF THE PROPOSED AND

REGULAR HUFFMAN TECHNIQUES IN RASPBERRY PI

Snapshot

Source Name 1.bmp 2.bmp 3.bmp 4.bmp 5.bmp

Image Size(MB) 14.4 3.6 0.9 0.225 0.025

Time(s)

Regular
Huffman
(RH)

- - 60.56 15.078 1.603

Proposed
Huffman
(PH)

- - 24.39 6.12 0.699

Enhancement Rate

((RH-PH)*100)/RH
- - 59.72 59.40 56.39

Fig. 6. Decoding Time comparison in Raspberry Platform

As the results of Figure 5 and Figure 6, the decompression
speed of the newly proposed technique is higher than the
existing regular Huffman-based technique for both Windows
and Raspberry Pi platforms. In table VII, It has been shown
that the proposed technique is more than 59% faster than the
basic Huffman technique in terms of decoding time at the
windows platform. In table VIII, it has been observed that the
proposed method is more than 56% faster than the regular
Huffman in the Raspbian platform. The proposed technique
outperforms the regular Huffman-based technique in terms of
decoding time as image size increases. Based on the findings,
the proposed technique does not perform better in terms of
compression ratio and compression time. Both approaches’
average compression time is roughly identical.

The binary Huffman technique compresses slightly better
than the proposed technique. As demonstrated , the proposed
method is inefficient in terms of memory usage. It has been
discovered that the proposed technique performs better in both
platforms for all images except those with a large image size
(14.4MB- snapshot1). Due to the poor processing capability
of the Raspberry Pi Processor, the regular Huffman technique
does not perform properly on images that are larger than 3.6
MB. In consequence, it has been evaluated that the proposed
technique outperforms the consistent Huffman technique on
low-processing-power machines.

V. CONCLUSION

The performance of constructing Huffman code using a
newly proposed tree structure vs the conventional binary tree
is contrasted in this paper. The research area focuses on
minimizing decoding time to speed up processing. The newly
proposed technique is compared to the existing Huffman-
based algorithm. In comparison to employing a binary tree, the
traversal time of a newly proposed tree structure is minimal.
The proposed technique searches two bits at a time during
the decoding process, which ensures a faster search than
traditional linear search. Consequently, in terms of processing
speed, the representation of Huffman code using a predicted
tree structure is more advantageous than the traditional Huff-
man binary tree. The existing Huffman-based technique uses
single-bit code to store data in memory, which slows decoding.
By contrast, the newly proposed algorithm introduces a two-
bit code to store data in memory. Therefore, the proposed
Huffman tree structure performs better because it decodes two
bits at a time from memory. The experiment concludes that
the proposed technique is more time-efficient than the regular
Huffman technique. The research topic can be expanded
to include a balanced Quaternary tree, which can increase
compression and decompression speeds simultaneously. In
addition, the proposed technique may be extended for the
video application data and 3D images as future work.
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