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Abstract— In the modern era, various real-time applications 

in indoor environments use Unmanned Aerial Vehicles (UAVs) 

for their internal operations. Day by day, the usage of UAVs in 

indoor spaces is gradually increasing. Using UAVs in indoor 

environments offers numerous benefits, including enhanced 

surveillance, monitoring, and data collection capabilities. The 

growing trend of incorporating unmanned aerial vehicles 

(UAVs) into interior environments underscores their potential 

to improve operational efficiency and safety across a wide range 

of sectors. When indoor GPS is unavailable, UAV localization 

tends to rely on vision-based techniques coupled with 

mechanical sensing, such as a visual navigation system or 

simultaneous localization. This research presents a machine 

learning-based supervised learning approach for indoor UAV 

localization using LoRa technology. This approach can serve as 

an additional solution for situations where GPS cannot function 

in indoor spaces. 
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I. INTRODUCTION  

Unmanned aerial vehicles (UAVs) are the latest 

technological innovations that can be used for various 

assignments. UAV applications are confined to the outdoors 

and indoor environments; hospitals, greenhouses, industrial 

firms, nuclear power plants, hangars, shopping malls, 

warehouses, assembly lines, and so on are just a few 

examples of inside manufacturing and service sites where 

UAVs could be useful. In hazardous conditions, UAVs with 

image devices and sensors may conduct visual and sensory 

inspection functions [1]. UAVs can be found in a broad range 

of forms and sizes. Sizes range from many meters to a few 

centimeters. Academics are particularly attracted to mini-

UAVs due to their small size, high agility, and low cost.  

We often receive inquiries about the limitations of GPS 

availability indoors when discussing position monitoring. 

GPS technology has rapidly gained popularity for outdoor 

location applications. However, in indoor environments, GPS 

tracking is difficult to establish a reliable signal and maintain 

accuracy. There are two main reasons why GPS is ineffective 

indoors: weak signal strength and subpar performance. 

Indoor spaces, particularly buildings, can obstruct GPS 

signals, resulting in a significant weakening of the signal 

strength and a decrease in tracking accuracy. As a result, GPS 

tracking indoors becomes unreliable. Additionally, GPS 

technology itself has inherent limitations in terms of 

precision. While certain industrial applications require 

accuracy within half-meter ranges, GPS can only deliver such 

precision outdoors, typically within 5 to 10 meters. Due to 

these limitations, alternative positioning technologies have 

emerged for accurate indoor tracking and monitoring. These 

technologies include Wi-Fi positioning, Bluetooth beacons, 

and indoor positioning systems, which leverage local 

infrastructure or wireless signals within buildings to 

determine device location. Considering these factors when 

seeking indoor positioning solutions is important, as relying 

solely on GPS may not yield accurate results within indoor 

environments [2]. 

GPS is ineffective indoors due to the variety of 

conditions. Therefore, alternative indoor navigation 

algorithms for UAVs should be investigated. WiFi and 

Bluetooth have commonly used low-range signals in existing 

indoor and outdoor positioning systems. However, LoRa 

(Long Range) technology comes into play for applications 

requiring longer-range capabilities. LoRa offers an extended 

communication range, making it suitable for various 

scenarios. Whether indoors or outdoors, LoRa-based systems 

can deliver reliable and effective performance.  

LoRa is a versatile technology that may be used for both 

indoor and outdoor applications. It provides exceptional 

precision while keeping a large communication range. LoRa 

can give accuracy within a range of up to five kilometers in 

metropolitan areas, allowing for dependable locating and 

tracking. The range extends considerably further in rural 

regions, reaching up to 15 kilometers. LoRa's long range 

makes it a perfect solution for various circumstances, 

providing for reliable and accurate location in various 

conditions. In this research, we used LoRa technology to 

predict the position of UAVs with machine learning 

techniques in the indoor environment.   

This paper aligns a project on the Supervised Learning 

Approach for UAV Localization in Indoor Environments. 

While machine learning indoor localization has been 

extensively researched for slow-moving objects such as 

humans, a notable gap exists in studies focusing on ML-based 

indoor localization for fast-moving objects like UAVs. This 

presents various challenges, including signal fluctuations and 

diverse multipath types, particularly in environments where 

UAVs are in motion. Localization in three dimensions is a 

major focus of this project. It consists of three fixed LoRa 

reference nodes, each located in three different places inside a 

building in a triangular position, and one moving LoRa node 

mounted on the UAV and moves with it. Following Fig. 01 is 
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a diagram illustrating the basic concept of three-dimensional 

localization. As a result of their position, Reference Node 01, 

Reference Node 02, and Reference Node 03 can receive the 

RF signal emitted by the target node, enabling precise 

measurements and data analysis. 

 

Fig. 1. Localization in indoor environments 

 This paper has been organized as follows. Section I gives 

the introduction, section II gives the Related Works, section 

III gives the Experimental Testbed and Dataset, section IV 

gives Model Training, section V gives Results and Discussion, 

section VI gives Future Works, and Section VII gives 

Conclusions. 

II. RELATED WORKS 

When discussing existing systems, we can learn about 

numerous approaches used for indoor positioning systems.  

The paper [4], showcases a 3D laser radar-based UAV 

indoor detecting system. To estimate the UAV's velocity, 

they first receive the point cloud data from the UAV aerial 

lidar, extract its edge feature points and plane feature points, 

and then match the point cloud data from two successive 

periods. A point cloud map is being made in the meanwhile. 

Finally, the UAV scenario is tested using the public data set. 

In [5], it also presents a method with radar frequencies.  

The method called Manifold Alignment with Mobile AP 

Detection is used in [6], and in this case, the mobile WLAN 

APs reduce positioning accuracy. In some research, they have 

presented methods with Magnetic Field Measurements for 

Indoor Positioning. [7] is a related research for that method, 

and Readings of the magnetic field are the major source of 

information needed to identify where the platform is. The 

paper [8] presents a visual-inertial odontography localization 

technique based on fiducial markers. That technology enables 

multi-rotor aerial vehicles to navigate in interior 

environments and handles the most challenging aspects of 

image-based indoor localization. The emphasis of the study 

in [9] is on indoor UAV localization using an Inertial 

Measurement Unit (IMU). They use data from onboard 

sensors such as accelerometers and gyroscopes to determine 

the UAV's position and orientation within its internal 

environment. 

The objective of the research in [10] is to look at UAV 

indoor localization utilizing Bluetooth Low Energy (BLE) 

beacons. They deploy Bluetooth low-energy beacons around 

the facility and use signal strength or proximity information 

to predict the location of the UAV using appropriate 

algorithms. In the study [11] they looked at the viability of 

employing UWB signals to place UAVs in interior settings 

precisely, and they suggested a localization technique based 

on time-of-flight measurements. The paper [12] analyzes 

magnetic field patterns in the inside environment and creates 

algorithms to predict the UAV's position based on these 

patterns. 

Research [13] investigates indoor UAV localization using 

a deep learning technique. The authors propose a 

Convolutional Neural Network (CNN) architecture to extract 

characteristics from sensor data and achieve precise 

localization of the UAV within indoor settings. The paper 

[14] describes a method for indoor UAV localization that 

uses Wi-Fi fingerprinting and supervised learning methods. 

They gather Wi-Fi signal strength data and apply machine 

learning techniques to pinpoint the UAV's position precisely. 

In this project, we use LoRa technology with machine 

learning techniques to predict the location of UAVs in indoor 

environments as discussed before. 

III. EXPERIMENTAL TESTBED AND DATASET 

At the beginning of the project, we designed and fabricated 

LoRa-based reference and target nodes. The design and 

fabrication of LoRa-based reference and target nodes allowed 

us to adapt and optimize the hardware, particularly for our 

project's needs, providing accurate and efficient data 

collecting for indoor localization. Then, RSSI data will be 

collected on the second floor of the ‘Suranimala Building’(the 

selected indoor environment area). The deployment of LoRa-

based reference and target nodes enabled us to gather accurate 

RSSI data on the second story of the 'Suranimala Building,' 

offering a targeted dataset for the indoor environment of 

interest. Moving and reference nodes are as follows.

 

 

 

Fig. 2. Moving node 

 

 

Fig. 3. Reference nodes 
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Fig. 04. Floor plan of the indoor environment 

 

 In this project, we used an indoor area within a building 

and chose eight distinct positions on one of the building's 

floors (called Suranimala building). By selecting these eight 

varied spots on a certain level of the Suranimala building, we 

hoped to capture various situations and spatial differences 

inside the indoor environment for comprehensive research and 

assessment in our project. Above Fig.04 is a sketch of the 

indoor environment we used. 

 

Fig. 5. Triangular method for the reference nodes 

 We placed the three reference nodes inside the building in 

a triangle arrangement. According to peer-reviewed studies, 

the triangle approach was the most effective method for 

obtaining more accurate data. In addition to implementing the 

best practices recommended by peer-reviewed studies[15], the 

three reference nodes were strategically positioned inside the 

structure in a triangular configuration to enable triangulation-

based localization techniques, which were intended to 

improve the accuracy and reliability of the data collected. The 

figure mentions them as Node 1, Node 2, and Node 3.  

 The locations of the nodes are as follows. 

TABLE I.  LOCATIONS OF THE NODES 

Node Location 

1 Lecture Theater A 

2 Open Area 

3 Computer Engineering Laboratory 

 

The locations and location IDs we used are as follows. 

 

 

TABLE II.  LOCATIONS AND LOCATIONS ID’S 

ID Location 

1 Lecture Theater A 

2 Lecture Theater B 

3 Open Area 

4 CCNA Laboratory 

5 Lecture Theater C 

6 QA Laboratory 

7 Computer Engineering Laboratory 

8 Computer Science Department office 

 

RSSI data were graphed for each reference node to 

measure variation between the eight classrooms. You can see 

those graphs in the following figures (Fig. 6, Fig. 7, and Fig. 

8). 

 

Fig. 6. RSSI data scatter plot by classes for Node 01 

 

Fig. 7. RSSI data scatter plot by classes for Node 02 
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Fig. 8. RSSI data scatter plot by classes for Node 03 

 

 

 

Fig. 9.1. Reference node 01 in lecture theater A 
 

Fig. 9.2. Reference node 01 in lecture theater A 

 

Fig. 10.1. Reference node 02 in open area  

Fig. 10.2. Reference node 02 in open area 

 

Fig. 11.1. Reference node 03 in computer engineering  

laboratory 

 

Fig. 11.2. Reference node 03 in computer engineering  

laboratory 
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The images above represent the three distinct sites where 

the reference nodes were fixed. These carefully selected 

points act as secure anchors inside the system, giving a 

consistent frame of reference for subsequent analysis. 

Positioning these reference nodes is critical for appropriately 

measuring the system's behavior and dynamics under diverse 

situations. 

IV. MODEL TRAINING 

We used Supervised Learning machine learning 

algorithms to develop a model to work in this project. We 

tested with different ML algorithms and got metrics like 

accuracy, precision, recall, and f1 score as the results for the 

collected dataset. SVM Classifier, Naive Bayes, kNN 

Classifier, Random Forest Classifier, Decision Tree 

Classifier, and Gradient Boosting(ensemble learning) are the 

Supervised Learning machine learning algorithms we used to 

take the above results. The performance of the machine 

learning algorithms was evaluated using the metrics obtained 

to determine their efficacy in the specific project. These 

metrics provide helpful information about the algorithms' 

ability to identify and predict the expected results accurately. 

The performance of each evaluated algorithm varied, 

emphasizing the significance of picking the best algorithm for 

the individual project needs. Examining several algorithms 

enables a thorough study, which aids in the decision-making 

process for model selection and future enhancements.

 

TABLE III.  RESULTS FOR THE MATRICES 

Algorithm Accuracy Precision Recall f1 

SVM Classifier 97% 

(0.975197618225773) 
0.975197618 0.975983075 0.975137382 

Naive Bayes 97% 

(0.976236239734405) 

0.977850854 0.97782008 0.977720322 

kNN Classifier 98% 

(0.98169666258955) 

0.983258433 0.982793815 0.983024892 

Random Forest Classifier 98% 

(0.982526646863533) 

0.983864206 0.983502461 0.983678867 

Decision Tree Classifier 98% 

(0.9824392800978) 

0.983647066 0.983589162 0.983614874 

Gradient Boosting(ensemble learning) 98% 

(0.983880831731609) 

0.985112829 0.984620901 0.984844812 

  

V. RESULTS AND DISCUSSION 

The results of the Supervised Learning algorithms serve as 

the foundation for creating the model in this project, allowing 

informed judgments about algorithm selection and future 

changes to maximize its performance. Tab. 3 reveals that all 

approaches provide a high accuracy percentage for all of the 

ML algorithms we tested but with tiny differences. As a result, 

we can select the Gradient Boosting algorithm as the most 

effective approach for the particular hardware needs based on 

the performance of the various Supervised Learning 

algorithms on hardware devices. However, after applying 

filtering techniques to the acquired dataset, we should repeat 

this step. We hope to modify and improve the performance of 

the selected Supervised Learning algorithms by combining 

filtering techniques into the acquired dataset, establishing a 

robust and accurate model for UAV localization in indoor 

situations. 

VI. FUTURE WORKS 

In this project, we have used LoRa reference and target 

nodes to develop a system for position tracking of UAVs in an 

indoor environment. We have collected an RSSI dataset in this 

project and used supervised learning algorithms to predict the 

location. The ML algorithms we have used are only SVM, 

Naïve Bayes, kNN, Random Forest, Decision tree, and 

Gradient boosting. Other supervised learning techniques 

could be used for this project as well. In addition, we only 

experimented on a single building floor. This LoRa approach 

might be used in a building with several floors with the same 

structure. Also, if the UAV is outside the building, this may 

be tried for indoor and outdoor surrounding environments 

simultaneously and predict its location. Exploration and 

experimentation with additional supervised learning 

techniques, expanding the experiment to multiple floors 

within a building, and extending the LoRa approach to indoor 

and outdoor environments can all lead to more robust and 

versatile UAV position-tracking systems in various settings. 

VII. CONCLUSIONS 

We presented an experimental low-power RSSI data-

gathering testbed based on LoRa wireless technology that will 

aid in the design of indoor positioning systems in this paper. 

GPS is a locational solution that does not function well 

indoors. Wi-Fi's constrained sensing range makes it unsuitable 

for large-scale indoor applications. LoRa is suggested over 

currently used techniques because of its high sensing capacity. 

Microcontrollers were used to design reference and target 

nodes to reduce energy and costs. The three reference nodes 

are located in different places inside the building in a 

triangular position and the moving node was fixed to the UAV 

and located in eight different places on the same floor of the 

building to collect. The dataset was developed with the RSSI 
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data collected with this test bed. The dataset obtained from the 

low-power LoRa-based RSSI data-gathering testbed provides 

valuable insights and potential for developing accurate and 

cost-effective indoor positioning systems, taking advantage of 

the benefits of LoRa technology, energy-efficient 

microcontrollers, and strategically placed reference and target 

nodes for comprehensive data collection. 
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