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Abstract—Groundnut, a major global oilseed abundantly 

grown in tropical areas, faces yield variations due to climatic 

factors. Predicting groundnut yield is essential for farmers. 

This research employs artificial intelligence, specifically 

Levenberg–Marquardt, Bayesian Regularization, and Scaled 

Conjugate Gradient algorithms, to predict groundnut yield. 

The study focuses on different districts in Sri Lanka, 

considering yearly, seasonal, and monthly variations in 

climatic factors like minimum temperature, maximum 

temperature, and rainfall. A three-layer neural network with 

10 neurons in the hidden layer, as well as log sigmoid functions 

was utilized. Notably, the Levenberg–Marquardt algorithm, 

combined with natural logarithm transformation, yielded the 

highest Pearson correlation values (0.84 for training, 1.00 for 

validation, and 1.00 for testing) and the lowest mean squared 

error (2.2859 × 10−21). K-Fold cross-validation having a K 

value of 5 enhanced the prediction procedure, as a result of 

which the mean squared error (0.3724) is smaller when applied 

to natural logarithm-transformed yield values. This research 

highlights the influence of climatic conditions in groundnut 

yield prediction and underscores the importance of selecting 

relevant factors and effective training algorithms. 

Keywords—Artificial neural network, climatic factors, 

groundnut, Levenberg–Marquardt algorithm, yield prediction 

I. INTRODUCTION 

Groundnut (Arachis hypogaea L.), a versatile legume 

crop known as peanut, holds a prominent place in global 

agriculture due to its substantial oil and protein content [1]. 

Key producers, including China, India, and Nigeria, 

contribute significantly to its worldwide importance. Sri 

Lanka, a tropical region, provides an ideal environment for 

groundnut cultivation, with two primary growing seasons: 

Yala and Maha. Yala spans from April to August, and Maha 

covers September to March, following local rainfall patterns 

[2]. In Sri Lanka, groundnuts are cultivated in the 

intermediate and dry zones, thriving as rain-fed crops in 

highland areas during the Maha season or as irrigated crops 

in paddy fields during the Yala season. Main groundnut 

cultivation areas in Sri Lanka encompass regions like 

Kurunegala, Ampara, Puttalama, Badulla, Ratnapura, and 

Moneragala with a total production of 36,947 metric tons in 

2021 across 18,537 hectares [3]. 

Modern agricultural practices are increasingly 

employing sophisticated computational techniques to 

forecast crop yields. These techniques have led to the 

development of crop models and decision-making tools that 

are crucial for precision agriculture. These tools encompass 

a diverse range of methodologies, including linear 

regression, non-linear simulations, Support Vector 

Machines, Adaptive Neuro-Fuzzy Interference Systems, 

expert systems, data mining, Genetic Programming (GP), 

and Artificial Neural Networks (ANNs). The primary 

objective of these techniques is to accurately predict crop 

yields, while incorporating the impact of climate change [4]. 

ANNs, specifically, have exhibited remarkable proficiency 

in addressing intricate agricultural dilemmas such as crop 

disease identification, harvest automation, and product 

quality evaluation [5]. 

Inspired by the interconnected and nonlinear architecture 

of the human brain, neural networks create an extensive, 

distributed system for processing information. This 

approach was initially modeled after the intricate 

organization of the central nervous system. These networks, 

which are formed up of interconnected nonlinear computing 

units, mimic the intricate processing capabilities of the brain 

of human, facilitating intricate information processing. Their 

adaptability makes ANNs a powerful alternative to linear 

models, as they possess the capability to approximate a wide 

range of mathematical functions with sufficient data and 

computational resources. When constructing neural network 

models, three training algorithms are commonly used: 

Levenberg–Marquardt (LM), Bayesian Regularization (BR), 

and Scaled Conjugate Gradient (SCG). LM excels across 

various domains, outperforming basic gradient descent 

techniques and other methods based on conjugate gradients 

[6]. BR is a regularization technique employed with 

gradient-based solvers to prevent overfitting by constraining 

synaptic weightings in relation to the sum of squared errors 

or mean squared errors (MSE). SCG, a supervised learning 

approach for network-based systems, widely addresses 

large-scale problems. These algorithms optimize the neural 
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network model's training process to enhance its 

performance. 

 Temperature and rainfall fluctuations notably affect crop 

development across diverse regions, underscoring the 

importance of understanding regional climate variables while 

managing agricultural activity. Rising temperatures have 

been identified as a significant factor impacting crop yields. 

Extensive research has explored this phenomenon using 

advanced modeling techniques. In the Sri Lankan context, 

this research takes the lead in investigating the correlation 

between climatic variables specifically, rainfall and 

temperature data and the production yield of groundnuts. 

Simultaneously, it investigates the optimal training algorithm 

for ANN models. 

II. METHODOLOGY 

In this study, groundnut yield data were gathered from 

the Department of Census and Statistics in Sri Lanka, 

covering several districts including Puttalam, Badulla, 

Anuradhapura, Kurunegala, and Hambantota. Climatic data, 

comprising monthly and seasonal parameters like rainfall 

(mm), minimum and maximum temperature (°C), were 

sourced from official repositories, specifically the 

Department of Meteorology in Sri Lanka, for these 

respective districts. The data covered a substantial period, 

spanning from 1990 to 2018. 

The primary objective of this study was to forecast 

groundnut yield by leveraging climatic factors through the 

application of two distinct methods (Method 1 and Method 

2) across four different scenarios (Scenarios 1, 2, 3, and 4). 

Validation of the outcomes derived from the ANN was 

conducted using K-fold cross-validation. Equation (1) 

encapsulates the mathematical representation of the intricate 

nonlinear correlation observed in this context. 

Groundnut Yield = ϕ (Rainfall, Temperaturemin, Temperaturemax)   (1)                   

Method 1 involved the utilization of a three-layer neural 

network consisting 10 neurons within the hidden layer, 

incorporating the sigmoid activation function. Method 2 

consisted a neural network structure from the neural 

network toolbox, characterized by a three-layer 

configuration, housing a solitary hidden layer comprising 10 

neurons and employing the log sigmoid activation function. 

 At the outset, the model incorporated seasonal data 

encompassing both Yala and Maha seasons, involving 

variables such as Yield (Maha, Yala), Rainfall(Yala, Maha), 

Minimum Temperature(Yala, Maha), and Maximum 

Temperature(Maha, Yala) specific to the Anuradhapura 

district within Scenario 1. Under Scenario 2, the approach 

solely utilized the data which were taken from Maha season 

pertinent to Anuradhapura district, encompassing detailed 

monthly climatic information. In that scenario, the 

cumulative monthly rainfall and the minimum and 

maximum temperatures of each month were considered 

within the Maha season timeframe. Scenario 3 involved the 

aggregation of annual yields from both Yala and Maha 

seasons within Anuradhapura district, integrating monthly 

climatic data for analysis. In that scenario, the cumulative 

monthly rainfall and the minimum and maximum 

temperatures of each month were considered within the one 

year timeframe. Scenario 4 employed the natural logarithm 

of Maha season yield along with monthly Maha season 

climatic data, as shown in Equation 2. In that scenario also, 

the cumulative monthly rainfall and the minimum and 

maximum temperatures of each month were considered 

within the Maha season timeframe. 

ln (Groundnut Yield) = ϕ (Rainfall, Temperaturemin, Temperaturemax) (2) 

MATLAB (version 9.6-R2019a) served as the 

platform for constructing the ANN architectures employed 

in predicting the yield of groundnut. In Method 1, LM 

algorithm performed well in Scenario 1, and thus, it was 

used for Scenarios 2, 3, and 4, with Scenario 4 yielding the 

best results. 

In Method 2, similar training algorithms were 

applied. The LM algorithm performed well in Scenario 1, 

and was subsequently used for Scenarios 2, 3, and 4, with 

Scenario 4 as the most advantageous and optimal among the 

options. Ultimately, K-Fold cross-validation effectively 

corroborated the correlation between the yield of groundnut 

and climatic factors across Scenarios 1 to 4. 

III. RESULTS 

A. Results Achieved with Method 1 

Table 1 exhibits the groundnut yield outcomes recorded 

in Anuradhapura for Yala and Maha seasons, with 

fluctuations of climatic factors across three distinct training 

optimization algorithms. LM algorithm showcased superior 

performance compared to BR and SCG algorithms, 

displaying notably higher Pearson Correlation Coefficient 

(r) values across training, validation, testing, and overall 

data points. Nevertheless, BR resulted in a negative value of 

-0.13 for testing, whereas SCG showed -0.51 for validation 

and -0.10 for testing. Furthermore, the MSE values for 

validation were lower in the LM algorithm as opposed to 

those observed in the SCG method. 

TABLE I. MODEL ACCURACY IN SCENARIO 1, ANURADHAPURA DISTRICT, 

METHOD 1 

  

Based on the results, the LM algorithm demonstrated higher 

r values and lower MSE values, signifying a strong 

correlation with predicted values and heightened predictive 

accuracy. Following the selection of the LM algorithm based 

on these findings, it was utilized for scenarios 2, 3, and 4 as 

detailed in Tab. 2 

 

 

 

Model 

r 

Validation 

MSE (kg/ha) Training Validation Testing 

All 

data 

points 

LM 0.49 0.22 0.32 0.44 144567 

BR 0.37 NA -0.13 0.32 NA 

SCG 0.18 -0.51 -0.1 0.05 281224 
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 TABLE II.   EVALUATING LM MODEL ACCURACY IN SCENARIOS 1–4 WITH 

METHOD 1 

 

According to the results, Scenario 4 under Method 1 

demonstrates higher r values and the lowest validation MSE, 

indicating a robust correlation with predicted values and 

enhanced accuracy. 

B. Results Achieved with Method 2 

Table 3 displays the results of groundnut yield in the 

Anuradhapura district for both of the Yala and Maha 

seasons, emphasizing differences in climatic factors among 

the three training optimization algorithms. The LM 

algorithm consistently outperformed BR and SCG in terms 

of r-squared values across training, validation, and all data 

points. The LM algorithm also exhibited lower validation 

MSE values compared to BR and SCG. This suggests that 

the LM algorithm is better able to capture the underlying 

relationships between groundnut yield and climatic factors. 

TABLE III.   THE ACCURACY ACCORDING TO THE SCENARIO 1, IN 

ANURADHAPURA DISTRICT, METHOD 1 

 

The outcomes highlight that within Method 2, the LM 

algorithm demonstrated superior r values and lower MSE 

values, indicating a robust correlation with predicted values 

and enhanced predictive accuracy. After selecting the LM 

algorithm, it was utilized for scenarios 2, 3, and 4 (Tab. 4). 

TABLE IV.    EVALUATION ACCURACY OF LM MODEL ACCOURDING TO 

THE SCENARIOS 2–4 UNDER METHOD 2 

 

 

 

According to the results, Scenario 4 under Method 2 

demonstrates higher r values and the lowest validation MSE 

(2.2859 × 10−21), indicating a robust correlation with predicted 

values and enhanced accuracy. 

C. Results Achieved with K-Fold Cross-Validation 

Due to the constraints posed by limited data, K-fold 

cross-validation was utilized for Scenarios 1 to 4, as depicted 

in Table 5. 

TABLE V.   MSE VALUES AND  BEST-FIT MODELS FOR CROSS-

VALIDATION IN SCENARIOS 1-4 

 

According to the outcomes derived from K-fold cross-

validation analysis, it is notable that Scenario 4 consistently 

exhibited the most accurate predictive performance. This 

conclusion is supported by its exceptionally low MSE value, 

specifically registering at an impressive 0.37245. This 

underscores the superior predictive capability of Scenario 4 

compared to the other scenarios. 

IV. CONCLUSION 

The results indicate that the LM training optimization 

algorithm consistently surpasses BR and SCG, as well as 

demonstrating superior r values and relatively lower MSE 

values across both Method 1 and Method 2. The LM 

training algorithm exhibits exceptional r values across 

various aspects of the analysis. The comparative assessment 

of training algorithms illustrates LM's proficiency in 

capturing associations between environmental factors and 

the groundnut yield converted to natural logarithms in both 

Method 1 and Method 2. In Scenario 4, the application of 

natural logarithm transformation narrows the range of yield 

data, resulting in improved outcomes characterized by 

higher r values and reduced MSE values. The LM 

algorithm's optimization strategies, combining the steepest 

descent method and the Gauss–Newton method, 

significantly contribute to its efficiency and quicker 

convergence. In Scenario 4, Method 2, utilizing the log 

sigmoid function for the neurons of ANN, outperforms 

Method 1. K-Fold cross-validation across different scenarios 

consistently supports Scenario 4 as the most accurate, 

demonstrating its compatibility with the LM algorithm in 

both Method 1 and Method 2. In this context, the LM 

training algorithm, with its high r values, low MSE values, 

and rapid convergence, proves to be the most effective. 

These observations underscore the importance of selecting 

the appropriate training algorithm, considering factor 

expansion and transformations to enhance predictive 

capabilities. They also highlight the potential effectiveness 

of the LM algorithm, especially when combined with 

sigmoid and log sigmoid activation functions in distinct 

methods. The use of K-Fold cross-validation further 

consolidates and substantiates these findings. 

Models 

r Training 

MSE 

(kg/ha) Training Validation Testing 
All data 

points 

LM 0.45 0.37 0.19 0.33 211778 

BR 0.36 0.09 0.22 0.27 383711 

SCG -0.01 0.20 -0.07 -0.03 253457 

Scenario 

r 

Validation 

MSE 

(kg/ha) Training Validation Testing 

All 

data 

point

s 

2 0.10 0.77 0.99 0.30 82394 

3 0.99 0.78 0.69 0.77 535601 

4 0.84 1.00 1.00 0.87 
2.2859×10−

21 

Scenario K value Best Model MSE 

1 5 Robust Linear 1.8071x105 

2 5 Linear SVM 1.3371x105 

3 5 Linear SVM 2.7491x105 

4 5 
Medium 

Gaussian SVM 
0.37245 

Scenario Training Validation Test 

All 

data 

points 

Validation 

MSE 

(kg/ha) 

1 0.49 0.22 0.32 0.44 144567 

2 0.72 -0.6 0.78 0.46 860540 

3 0.82 0.91 0.95 0.7 410730 

4 0.95 0.98 0.93 0.86 0.4993 
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